Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Geometrically frustrated kagome lattices are raising as novel platforms to engineer correlated topological electron flat bands that are prominent to electronic instabilities. Here, we demonstrate a phonon softening at thekz = πplane in ScV6Sn6. The low energy longitudinal phonon collapses at ~98 K andq = $$\frac{1}{3}\frac{1}{3}\frac{1}{2}$$ due to the electron-phonon interaction, without the emergence of long-range charge order which sets in at a different propagation vectorqCDW = $$\frac{1}{3}\frac{1}{3}\frac{1}{3}$$ . Theoretical calculations corroborate the experimental finding to indicate that the leading instability is located at$$\frac{1}{3}\frac{1}{3}\frac{1}{2}$$ of a rather flat mode. We relate the phonon renormalization to the orbital-resolved susceptibility of the trigonal Sn atoms and explain the approximately flat phonon dispersion. Our data report the first example of the collapse of a kagome bosonic mode and promote the 166 compounds of kagomes as primary candidates to explore correlated flat phonon-topological flat electron physics.more » « less
-
null (Ed.)Low dimensional magnetism has been powerfully boosted as a promising candidate for numerous applications. The stability of the long-range magnetic order is directly dependent on the electronic structure and the relative strength of the competing magnetic exchange constants. Here, we report a comparative pressure-dependent theoretical and experimental study of the electronic structure and exchange interactions of two-dimensional ferromagnets CrBr 3 and Cr 2 Ge 2 Te 6 . While CrBr 3 is found to be a Mott–Hubbard-like insulator, Cr 2 Ge 2 Te 6 shows a charge-transfer character due to the broader character of the Te 5p bands at the Fermi level. This different electronic behaviour is responsible for the robust insulating state of CrBr 3 , in which the magnetic exchange constants evolve monotonically with pressure, and the proximity to a metal–insulator transition predicted for Cr 2 Ge 2 Te 6 , which causes a non-monotonic evolution of its magnetic ordering temperature. We provide a microscopic understanding for the pressure evolution of the magnetic properties of the two systems.more » « less
An official website of the United States government
